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Abstract—How neurons in the cerebral cortex process
and transmit information is a long-standing question in
systems neuroscience. To analyze neuronal activity from an
information-energy efficiency standpoint, Berger and Levy
calculated the maximum Shannon mutual information trans-
fer per unit of energy expenditure of an idealized integrate-
and-fire (IIF) neuron whose excitatory synapses all have
the same weight. Here, we extend their IIF model to a
biophysically more realistic one in which synaptic weights are
unequal. Using information theory, random Poisson measures,
and the maximum entropy principle, we show that the
probability density function (pdf) of interspike interval (ISI)
duration induced by the bits per joule (bpj) maximizing pdf
fΛ(λ) of the excitatory postsynaptic potential (EPSP) intensity
remains equal to the delayed gamma distribution of the IIF
model. We then show that, in the case of unequal weights,
fΛ(·) satisfies an inhomogeneous Cauchy-Euler equation with
variable coefficients for which we provide the general solution
form.

I. INTRODUCTION

The human brain, only two percent of the body’s
weight, accounts for twenty percent of the body’s energy
consumption[2][3]. Brains have evolved that prodigiously
compute and communicate information with remarkable
efficiency. Energy minimization subject to functional con-
straints is a unifying principle[4]. Information theory often
has been employed in neuroscientific data interpretation
and system analysis during the last fifty years [5][6] [7][8].
However, energy-efficient neural codes have been studied
for less than two decades [9][10][11]. Evidence for energy
efficiency has been reported for ion channels [4], photore-
ceptors [12], retina [13] [14], and cortex [15] [16]. Laughlin
and Sejnowski discussed the cortex as a communicating
network from an energy efficiency perspective [17]; Mitchi-
son et al. and Chklovskii et al. applied energy efficiency to
analyze cortical wiring and brain mapping [18][19]; Berger
and Levy proposed an energy efficient mathematical model
for information transmission by a single neuron [1].

The goal of this paper is to find the capacity-achieving
input distribution of incoming EPSP intensity for an ex-
tended Berger-Levy model in which their synapses have
unequal weights, and the distribution of the output ISI
durations that results from said capacity-achieving input
distribution. Our main and perhaps striking result is that the
same gamma distribution of ISI durations that Berger and

Figure 1. Single interspike interval (ISI) schematic with the illustration
of all physical parameters.

Levy found resulted from the energy constrained capacity-
achieving input distribution when the synaptic weights all
were assumed to be equal continues to apply when these
weights are allowed to be unequal. Also, we show that the
optimal EPSP intensity for the case of unequal synaptic
weights, which differs from its fixed-weight counterpart, is
the solution of an inhomogeneous Cauchy-Euler equation
with variable coefficients.

We first introduce a mathematical framework for how a
single neuron stochastically processes and communicates
information. Let us call the cortical neuron being modeled
“neuron j”, or simply “j”. Let W k = (W1, ...,WMk

),
where Wl is the weight of lth synapse of j to receive a
spike during the kth ISI and produce an EPSP in response
thereto. We time-order the EPSP’s according to the times
at which they arrive at the somatic membrane and hence
contribute to j’s PSP accumulation. Mk is the integer-
valued random cardinality of W k.

We inherit from the B-L neuron model [1] the as-
sumption that the only synaptic responses that j sums
when generating its spikes are those of its excitatory
synapses, the net strength of j’s inhibitory inputs serving
only to scale this summation. However, we no longer
assume that all of j’s excitatory synapses have the same
weight. Rather, we assume that the components of W k

are chosen independent and identically distributed (i.i.d.)
according to a certain cumulative distribution function (cdf)
FW (w) = P [W ≤ w], 0 ≤ w < ∞. We model the lth
contribution to j’s EPSP accumulation to be Wl ·u(t− tl);
here, Wl is a random variable (r.v.) with the aforementioned
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cdf FW (w) and u(t − tl) equals 1 for t ≥ tl and equals
0 for t < tl. We continue to assume as in [1] that each of
j’s refractory periods has the same duration, ∆. Since this
theoretical extension connects the plasticity of a neuron’s
synaptic weights, widely considered essential to learning
and memory, with the communication of information by the
neuron, it may possess considerable practical significance
[20].

Slightly differently from [1], we model the EPSP’s
produced in response to spikes from j’s afferent cohort
as an inhomogeneous Poisson measure with instantaneous
rate function, A(t), defined by

A(t) := lim
dt→0

P [one EPSP arrival in(t, t+ dt)]

dt
. (1)

Then as in [1] we take a time average operation over the
rate function A(t) and obtain

Λk =
1

Tk −∆

∫ Sk

Sk−1+∆

A(u)du, (2)

where ∆ is the duration of j’s refractory period, Tk is the
kth ISI duration of j and Sk = T1 + · · ·+ Tk.

Henceforth, we suppress the ISI index k and just write
W , M , T and Λ. Thus, when Λ = λ, EPSP’s are being
assumed to arrive according to a homogeneous Poisson
process with intensity λ.

Here we are interested in the Shannon mutual informa-
tion, I(Λ;T ). Although this has been defined for a single
pair of r.v.’s Λ and T , it has been shown that it is a good
first-order approximation to the long term information in
bits per spike, namely

I := lim
N→∞

1

N
I(Λ1, . . . ,ΛN ;T1, . . . , TN ), (3)

lacking only an information decrement that addresses cor-
relation among successive Λi’s; see [1].

Since T − ∆ is a one-to-one function of T , we have
I(Λ;T ) = I(Λ;T −∆), which in turn is defined [21] [22]
as

I(Λ;T −∆) = E log

[
fT−∆|Λ(T −∆|Λ)

fT−∆(T −∆)

]
, (4)

where the expectation is taken with respect to the joint
distribution of Λ and T .

Toward determining I(Λ;T ), we proceed to analyze
fT−∆|Λ(t|λ) and fT−∆(t) in cases with unequal synaptic
weights.

II. NATURE OF THE RANDOMNESS OF WEIGHT
VECTORS

Even if the excitatory synaptic weights of neuron j were
known, W = (W1, ...,WM ) would still be random because
the time-ordered vector R of synapses excited during an ISI
is random. However, for purposes of mathematical analysis
of neuron behavior it is not fruitful to restrict attention to
a particular neuron with a known particular set of synaptic
weights. Rather, it is more useful to think in terms of the
histogram of the synaptic weight distributions of neurons in
whatever neural region is being investigated. When many
such histograms have been ascertained, if their shapes
almost all resemble one another closely, then they can be

arithmetically averaged to obtain a population histogram
with fine resolution in the weights of its synaptic bins.
This, in turn, would permit one to approximate this fine
histogram by a continuous amplitude probability distri-
bution of synaptic weights. (Then the analysis becomes
more widely applicable than if one were to have used the
exact weights of a particular neuron, especially considering
that even that neuron will have a different set of weights
in the future because of ongoing synaptic modification.)
Moreover, the strong similarity of the synaptic weight
distributions has been observed through experiments.[20]
Therefore, in the analysis that follows we take the view
that the components of W are selected randomly from
this continuous amplitude probability distribution. Said
random distribution of synaptic weights also incorporates
the random number of neurotransmitter-containing vesicles
that are released when a spike is afferent to the synapse,
the random number of neurotransmitter molecules in these
vesicles, how many of those cross the synaptic cleft, bind
to receptors and thereby generate EPSP’s.

This model of random selection of weights comprising
W is applicable both to ISI’s in which the afferent firing
rate Λ is large and to those in which it is small. When
the value λ assumed by Λ is large, W ’s components just
get selected more rapidly than when λ is small, but they
continue to come from the same distribution. This implies
that the expected number of them in a single ISI remains
the same. Hence, from now on, we assume that the weight
vector components W1, ...,WM are jointly independent of
Λ.

III. FINDING fT−∆|Λ(t|λ): MIXTURES OF GAMMA
DISTRIBUTIONS

We denote the spiking threshold by θ. The contribution
to j’s PSP accumulation attributable to the lth afferent
spike during an ISI will be assumed to be a randomly
weighted step function Wl · u(t− tl), where tl is the time
at which it arrives at the postsynaptic membrane. 1

It follows that the probability Pm = P (M = m) that
exactly m PSP’s are afferent to j during an ISI is

Pm = P (W1+· · ·+Wm−1 < θ, W1+· · ·+Wm ≥ θ). (5)

Next, we write

P (t ≤ T −∆ ≤ t+ dt|Λ = λ)

=
∞∑
m=1

P (t ≤ T −∆ ≤ t+ dt,M = m|Λ = λ)

=
∞∑
m=1

Pm · P (t ≤ T −∆ ≤ t+ dt|Λ = λ,M = m), (6)

where (6) holds because of the assumption that W =
(W1, ...,WM ) is independent of Λ, which implies its
random cardinality, M , is independent of Λ.

1In practice, u(t− tl) needs to be replaced by a g(t− tl), where g(·)
looks like u(·) for the first 15 or so ms but then begins to decay. This
has no effect when λ is large because the threshold is reached before
this decay ensues. For small-to-medium λ’s, it does have an effect but
that could be neutralized by allowing the threshold to fall with time in
an appropriate fashion. There are several ways to effectively decay the
threshold, one being to decrease the membrane conductance.
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It follows as in [1] that, given M = m and Λ = λ, T−∆
is the sum of m i.i.d. exponential r.v.’s with parameter λ,
i.e., a gamma pdf with parameters m and λ. Summing
over all the possibilities of M and letting dt become
infinitesimally small, we obtain

fT−∆|Λ(t|λ) =
∞∑
m=1

Pm ·
λmtm−1e−λt

(m− 1)!
u(t). (7)

It is impossible to determine Pm in the general case.
However, we have been able to compute it exactly in the
special case of an exponential weight distribution.

A. Case: Exponential Weight Distribution

Suppose the components of the weight vector are i.i.d.
and have the exponential pdf αe−αwi , wi ≥ 0 with α > 0.

Then we know that Ym := W1 + · · · + Wm has the
gamma pdf

fYm
(ym) =

αmym−1e−αy

(m− 1)!
u(y).

So, referring to (5), we have

Pm =P (Ym−1 < θ, Wm ≥ θ − Ym−1)

=

∫ θ

0

fYm−1
(u)du

∫ ∞
θ−u

fWm
(v)dv

=
(αθ)

(m−1)

(m− 1)!
e−αθ. (8)

Therefore, it follows from (7) that

fT−∆|Λ(t|λ) =
∞∑
m=1

(αθ)
m−1

(m− 1)!
e−αθ · λ

mtm−1e−λt

(m− 1)!
u(t)

=λe−(αθ+λt)
∞∑
k=0

(αθλt)
k

(k!)
2 u(t). (9)

The summation in (9) equals I0(2
√
αθλt) where I0 is

the modified Bessel function of the first kind with order
0 [23].

IV. T −∆ IS GAMMA DISTRIBUTED

For the conditional pdf fT−∆|Λ(t|λ) as in (7), letting
X = λ(T −∆), we have the following equality

|fX|Λ(x|λ)dx| = |fT−∆|Λ(t|λ)dt|

in which x = λt. It follows, in view of (7), that

fX|Λ(x|λ) =
∞∑
m=1

Pm ·
xm−1e−x

(m− 1)!
, 0 ≤ x <∞. (10)

Note that λ not only doesn’t explicitly appear on the
right-hand side of Eq. (10) but also does not appear there
implicitly within any of the Pm’s; this is because, as noted
earlier, M is independent of Λ, so Pm = P (M = m)
cannot be λ-dependent. Accordingly,

fX|Λ(x|λ) = fX(x) =
∞∑
m=1

Pm ·
xm−1e−x

(m− 1)!
, x ≥ 0. (11)

Hence, although X equals Λ(T −∆), X nonetheless is
independent of Λ. 2 We can rewrite the relationship as

T −∆ =
1

Λ
·X, (12)

where X is marginally distributed according to Eq. (11).
Then by taking logarithms in Eq. (12), we have

log(T −∆) = − log Λ + logX, (13)

We see that (13) describes a channel with additive noise
that is independent of the channel input. Specifically, the
output is log(T −∆), the input is − log Λ, and the additive
noise is N := logX, which is independent of Λ (and
therefore independent of − log Λ) because X and Λ are
independent of one another.

The mutual information between Λ and T −∆ thus is

I(Λ;T −∆) = I(log Λ; log(T −∆))

= h(log(T −∆))− h(log(T −∆)| log Λ)

= h(log(T −∆))− h(N). (14)

Letting Z = log(T −∆), we have

h(log(T −∆)) = h(Z) = −E log fZ(Z).

Since fZ(z) = fT−∆(t)|dt/dz| = fT−∆(t) · t, it finally
follows that

h(log(T −∆)) = −E[log(fT−∆(T −∆) · (T −∆))]

= h(T −∆)− E log (T −∆). (15)

Thus, after substituting Eq. (15) into Eq. (14) and adding
the information decrement term as in [1], the long term
average mutual information rate, I , we seek to maximize
over the choice of fΛ(·) is

I = h(T −∆)−h(N) + (κ−1)E log (T −∆)−C. (16)

Define T− := T −∆; then Eq. (16) becomes

I = h(T−) + (κ− 1)E log (T−)− h(N)− C. (17)

Since N is independent of Λ, the choice of fΛ(·) affects I
in Eq. (17) only through fT−(·) via the following equation∫ ∞

0

dλfΛ(λ)fT−|Λ(t|λ) = fT−(t), 0 ≤ t <∞. (18)

Therefore, our bpj maximizing task has been reduced to
maximizing the entropy rate h(T ) subject to Lagrange
multiplier constraints on information decrement, E log T ,
and energy constraint ET which can be written as C0(1 +
bT ) [1]. Taking C0 as the energy unit, we have b as the
coefficient of ET . It is known that the entropy h(T ) is
maximized subject to constraints on E log T and ET when

2A simple example in which X = AB is independent of A may be
enlightening here. Let P (A = −1) = P (A = 1) = 1/2, P (B =
−2) = P (B = −1) = P (B = 1) = P (B = 2) = 1/4, and assume
A and B are independent. Note that, given either A = −1 or A = 1,
X is distributed uniformly over {−2,−1, 1, 2}, so X is independent of
A. X is not independent of B in this example because |B| = 2 implies
|X| = 2, whereas |B| = 1 implies |X| = 1. In our neuron model the
two factors of X , namely Λ and T − ∆, are not independent of one
another but rather are strongly negatively correlated.
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T is a delayed gamma distribution with two parameters we
denote by κ and b, i.e.,

fT−(t) =

[
bκtκ−1e−bt

Γ(κ)

]
u(t), (19)

which is the bpj-maximizing distribution of neuron j’s ISI
duration, T , sans its refractory period which always has
duration ∆.

V. FROM THE INTEGRAL EQUATION TO THE
DIFFERENTIAL EQUATION

The integral equation below relates the following three
quantities:

1) The to-be-optimized pdf fΛ(λ) of the arithmetic
mean of the net afferent excitation of neuron j during
an ISI.

2) The conditional pdf fT−|Λ(t|λ) of j’s encoding of Λ
into the duration T of said ISI.

3) The long term pdf fT−(t) of j’s ISI duration.∫ ∞
0

dλfΛ(λ)fT−|Λ(t|λ) = fT−(t), 0 ≤ t <∞. (20)

Moreover, we have

fT−|Λ(t|λ) =
∞∑
m=1

Pm ·
λmtm−1e−λt

(m− 1)!
, (21)

and

fT−(t) =

[
bκtκ−1e−bt

Γ(κ)

]
u(t). (22)

Let’s first consider a case in which Pm is nonzero only
for two consecutive values of m, say n and n + 1 with
respective probabilities Pn = p and Pn+1 = 1− p := q. In
such a case∫ ∞

0

dλfΛ(λ)

(
pλntn−1

(n− 1)!
+
qλn+1tn

n!

)
e−λt = fT−(t).

(23)

Substituting Eq. (22) into Eq. (23) and applying integration
by parts and inverse Laplace transform on Eq. (23), it
follows that

(1 + q/n)fΛ(λ) + (λq/n)f ′Λ(λ)

=λ−n
Γ(n)

Γ(κ)Γ(n− κ)
bκ(λ− b)n−κ−1u(λ− b). (24)

Eq. (24) constitutes a conversion of the integral equa-
tion (23) for the maximum-bpj excitation intensity fΛ(λ),
into a first-order linear differential equation. The differen-
tial equation has a λ-varying coefficient on its f ′ term.
Nonetheless, it has an explicit analytical solution because
there exists a general solution to any inhomogeneous first-
order linear differential equation with variable coefficients.

In general, Eq. (24) turns out to be an inhomogeneous
Cauchy-Euler equation with variable coefficients as Eq.
(25).

n−1∑
j=0

j∑
i=0

Pj+1
(j + 1)!

(j − i+ 1)!

1

i!(j − i)!
λ(j−i)f

(j−i)
Λ (λ)

(25)

=
bκ

Γ(κ)Γ(1− κ)
λ−1(λ− b)−κu(λ− b).

Eq. (25) also has an analytical closed-form solution, which
serves as the bpj-maximizing pdf of neuron j’s averaged
afferent excitation intensity Λ.

VI. CONCLUSION

We have shown that, when neuron j is designed to
maximize bits conveyed per joule expended, even though
j’s synapses no longer are being required to all have the
same weight, the pdf of the ISI durations continues to be
exactly the same gamma pdf as it was in [1] wherein all the
weights were assumed to be equal. This happens despite
the fact that the conditional distribution for T given Λ is
now a mixture of gamma distributions instead of the pure
gamma distribution that characterizes the special case of
equal weights.

Additionally, we have implicitly determined the optimal
distribution fΛ(λ) that characterizes the afferent excitation
intensity by (1) maximizing the Shannon mutual informa-
tion rate given a constraint on the total energy cost that
a cortical neuron expends for metabolism, postsynaptic
potential accumulation, and action potential generation and
propagation during one ISI; (2) converting the integral
equation to a differential equation with a closed-form
solution.

The energy efficiency of the human brain in terms of
information processing is astonishingly superior to that
of man-made machines. By extending the Berger-Levy
information-energy efficient neuron model to an unequal
synaptic weights case, the theory comes into closer cor-
respondence with the actual neurophysiology of cortical
networks, which might pave the way to wider applications
in neuroscience and engineering.
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